Вход/Регистрация
Капля
вернуться

Гегузин Яков Евсеевич

Шрифт:

А если каплю, покрытую панцирем, охлаждать, будет происходить иное: растворенное вещество из жидкости, оставшейся под панцирем, будет осаждаться на панцире. Панцирь утолстится, и жидкость под ним будет всегда. Можно добиться, чтобы под слоем кристаллического по­крытия осталась чистейшая дистиллированная вода. Кап­ля чистой воды, защищенная от высыхания!

С каплей, покрытой панцирем, никакие загадки не свя­заны — все ясно, объяснимо, предсказуемо. И все же, когда встречаешься с каплей, которая, как бы защищая себя от исчезновения, покрывается панцирем, невольно задумываешься над тем, как много неожиданных следст­вий могут обусловить абсолютно ясные причины.

ДОЖДЬ НАД РЕКОЙ

Не прячьтесь от дождя! Вам что, рубашка

Дороже, что ли, свежести земной?

В рубашке вас схоронят. Належитесь,

А вот такого яркого сверканья

Прохладных струй, что льются с неба,

Прозрачных струй, в себе дробящих солнце,

И пыль с травы смывающих,

И листья

Полощущих направо и налево,

Их вам увидеть будет не дано.

Владимир Солоухин

Капля-шарик и капля-парашют

Судьбы дождевых капель, летящих с неба на землю, на­столько сложны и превратны, что рассказу о них можно было посвятить целую книгу. Иная капля, зародившись где-то в облаках и падая в теплых сухих слоях воздуха, может испариться, исчезнуть, не достигнув земли. Иная по дороге столкнется с подобной себе и, обретя в содру­жестве силу и массу, преодолеет все трудности пути, про­льется дождем на землю. Иная капля, приспосабливаясь к противотоку воздуха, изменит свою форму. Еще многое другое, о чем в кратком очерке не расскажешь, может произойти с дождевой каплей на ее пути к земле.

При прочих неизменных условиях судьба летящей кап­ли существенно зависит от ее массы. Поэтому, оставив без внимания капли промежуточных размеров, проследим за тем, что происходит с каплями маленькими и большими.

Однако вначале необходимо договориться, какие капли мы будем считать «маленькими», а какие «большими». В очерке об опыте Плато мы обсуждали вопрос о «малень­кой» капле, лежащей на твердой подложке, и выяснили, что в этих условиях «маленькой» следует считать такую каплю, у которой лапласовское давление успешно бо­рется с давлением, обусловленным ее тяжестью, и поэто­му капля остается почти сферической. Видимо, подобный критерий надо применить и к дождевой капле, но только при этом с лапласовским давлением ( Рл ), стремящимся сохранить сферическую форму капли, надо сравнивать деформирующее давление ( Р ), обусловленное сопротив­лением, которое оказывает летящей капле воздух. Если Рл >> Р, капля сохранит форму шарика и мы будем ее считать «маленькой», а если Рл < < Р, капля будет силь­но деформироваться давлением Р и ее мы будем считать

«большой». Рл нам известно, оно равняется 2 / R , а вот вы­числить Р — задача непростая. Для нас, однако, важно лишь знать, что Р растет с R и поэтому должны существовать такие размеры, при которых выполняются два предельных неравенства между Рл и Р , явившиеся для нас основанием делить капли на «маленькие» и «боль­шие».

Расчет приводит к тому, что к числу «маленьких» надо относить капли, размер которых порядка десятков микрон, а к числу «больших» те, радиус которых порядка мил­лиметров.

Теперь о полете маленькой капли, которая, падая, со­храняет форму шарика. Если с ее формой ничего не проис­ходит и шарик остается шариком, то о движении капли лучше говорить так: воздух, двигаясь снизу вверх, вязко обтекает водяной шарик. Попробуем вычислить скорость, с которой при этом водяной шарик — капля — прибли­жается к земле.

Начнем с примера, который имеет прямое отношение к нашей задаче о вязком обтекании воздухом капли. Допу­стим, к нити из вязкого вещества — смолы или разогре­того стекла — прикреплен грузик, под действием которого нить будет удлиняться, вязко течь. Очевидно, ее удлине­ние ( l ) будет тем большим, чем длиннее нить ( l ), больше время течения ( t ), больше нагрузка, приложенная к нити ( Р ), и меньше вязкость ( ) вещества, из которого она изго­товлена. Сказанное можно записать в виде формулы

l = lPt / ,

из которой следует, что скорость удлинения = l / t = lP /

Возвратимся теперь к вопросу о вязком обтекании воздухом капли-шарика. Этот процесс должен подчиняться тому же закону, что и вязкое течение нити. Различие заключается лишь в том, что в одном случае течет смола или стекло, а в другом — воздух. Важно, что в обоих случа­ях имеет место вязкое течение. Обратим, однако, внимание на то, что в интересующей нас задаче характерный раз­мер — не длина нити, а радиус шарика R и что напряже­ние Р пропорционально отношению силы F , тянущей шарик, к площади его сечения, т. е РF/R2 . Применительно к шарику формулу, определяющую скорость, можно переписать в виде: F / R . Мы воспользовались знаком «про­порционально» потому, что не учли конкретной геометрии потока воздуха вокруг шарика. Точный расчет приводит к формуле, которая от нашей отличается лишь множите­лем 1 /6 . , и таким образом:

  • Читать дальше
  • 1
  • ...
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: