Вход/Регистрация
Капля
вернуться

Гегузин Яков Евсеевич

Шрифт:

В 1879 г. английский физик Рэлей, второй директор зна­менитой Кавендишской лаборатории, заметил, что струя водяного фонтанчика, помещенная в электрическое поле, параллельное струе, менее охотно дробится на капли, чем в отсутствие поля. Он описал это явление, но подробно ис­следовать не стал. Вслед за ним многие повторили опыт, заметив при этом, что Рэлей увидел не все. Струя в поле действительно менее охотно дробится на капли, однако, если поле увеличить, можно добиться эффекта диамет­рально противоположного — дробление становится бо лее активным, на конце струи возникает множество мелких капель.

 

Капля на конце струи, колеблющаяся в электрическом поле

Через 70 лет, в 1949 г., опыт Рэлея повторил Я. И. Френкель со своими со­трудниками. Повторил с раз­личными жидкостями, меняя величину поля, напор струи. Он высказал некоторые сооб­ражения о причинах наблю­даемых явлений, затем экспериментально проверил спра­ведливость догадок и предло­жил приближенную теорию, которая удовлетворительно объяснила факты. Вот, по­жалуй, и вся история. Мы в лаборатории повторили опы­ты Френкеля и сняли об этом кинофильм, из которого здесь приведены две кинограммы.

Готовясь к опыту, собрали простое устройство: на высо­кой подставке располагался сосуд с водой, с ним была сое­динена резиновая трубка, ко­торая оканчивалась стеклян­ным оттянутым наконечни­ком. Из наконечника верти­кально била струя воды, про­ходя через отверстие в алю­миниевом диске, параллель­но которому на расстоянии около полуметра располагал­ся второй алюминиевый диск; гибкими проволочками диски соединялись с источником на­пряжения. Кроме того, к алю миниевым дискам подключали измеритель напряжения. В качестве источника использовали электростатическую машину (какая есть в любом школьном кабинете физики).

Опыт ставился так. Включалась струя. Ее напор регулировался таким образом, чтобы вершина струи не дости­гала верхнего диска. Начинали вращать ручку электростатической машины, следили за показаниями вольтмет­ра и кинокамерой снимали все то, что происходило со струей в электрическом поле.

Первая кинограмма. На приводимых кадрах последова­тельно отражено событие, которое происходит на конце струи, когда приложено небольшое напряжение. При на­пряжении около 200 в/см на конце струи образуется вна­чале небольшая, но постепенно увеличивающаяся капля, которая затем оседает вместе со струей и стекает вдоль нее. После этого струя поднимается, и процесс начинается сначала: зарождается и растет капля, оседает вместе со струей и стекает по ней. Выглядит это очень красиво — создается впечатление, что капля танцует на струе: при­седает и поднимается, приседает и поднимается. В объяс­нении нуждаются две характеристики явления: во-первых, почему на конце струи начинает формироваться крупная приседающая капля, которая ранее, в отсутствие поля, не образовывалась, во-вторых, чем определяется частота при­седаний капли?

Известно, что в отсутствие поля на конце струи форми­руются небольшие капли. Судьба каждой из них абсо­лютно независима от судьбы соседней капли. Независимо друг от друга они отрываются от струи и опадают. Если же струя находится в поле, каждая из образующихся капель поляризуется — это означает, что заряды, имеющиеся в объеме каждой капли, перераспределяются так, что у одного конца капли оказывается больше положитель­ных зарядов, а у противоположного — больше отрица­тельных. Поляризованные капли уже не безучастны друг к другу, они начинают взаимно притягиваться, образуя укрупненную каплю. До достижения некоторого размера эта капля поддерживается напором струи, а затем расту­щая капля, давя своей тяжестью на струю, прижимает ее к стеклянному наконечнику и оседает вместе с ней. Я. И. Френкель вычислил, что две капельки, каждая из которых имеет радиус 2 мм, друг к другу притягиваются с малой силой — всего 1 дина, но ее оказывается достаточно, чтобы удержать их рядом и вынудить принять участие в формировании крупной кап­ли.

 

Щеточка из водяных капель, расширяющаяся по мере роста напряженно­сти электрического поля

А теперь о частоте присе­даний или, лучше, так: о вре­мени , которое проходит между двумя приседаниями. Его можно определить, рас­суждая следующим образом. Растущая со временем капля будет увеличивать свой раз­мер до тех пор, пока давле­ние, оказываемое ею на струю ( Рк ), не станет равным давле­нию струи на каплю ( Рс ). Если нам известны скорость и сечение s струи, мы легко можем определить величины Рк и Рс. Они равны отноше­нию соответствующих сил Fк и Fс к сечению струи:

Рк = F к / s и Рс = Fс / s .

Очевид­но, Fк = тк. g ,а F с = тс. , где g — ускорение силы тя­жести, которой подвержена капля, тс — масса струи дли­ной h между наконечником и каплей, а — ускорение или, точнее, замедление, с которым движется струя. Так как у выхода из стеклянного наконечника струя имеет ско­рость , а в месте соприкосно­вения с набухшей каплей ее скорость обращается в нуль, то /

Считая, что средняя скорость струи cp = /2 , можно записать, что

тк = /2. s , а тс = sh .

Вот теперь, приравнивая Рк и Рс , получим:

(2 h / g) 1/2

  • Читать дальше
  • 1
  • ...
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: