Вход/Регистрация
Книга теорем 2
вернуться

Ленский Василий

Шрифт:

Естественные науки и техника также заложили в основу двухполярность. Даже в современных компьютерах физической базой является «положительный» и «отрицательный» электрические потенциалы.

Пример 6.

В пример взаимного исключения высказываний двух зеркальных лок можно привести: 1А) «Тот, кто уничтожает врагов, тот герой»; 2А) «Тот, кто уничтожает врагов, тот остаётся убийцей». При совмещении этих высказываний получится «герой он и есть убийца».

Трёхполярная поляризация

История

Не задумываясь, мы проводим операции вида +а — а = 0. Никому в голову не приходит, что здесь три полярности +, -, 0.

Всякий раз совершается «срез», когда появляется «два обратных элемента», таких, что, например, + 6–4 = + 2. Здесь +4–4 = 0. Куда исчезли +4 и -4?

[править]Плоскостная поляризация

Такая лока имеет три полярности. Обозначим их А, В, С. Четвертого не дано.

Теорема 3.

В трёхполярной локе законы отношений будут:

а) А + В = С, А + С = А, В + С = В.

b) С + С = С.

Доказательство.

1. Если, согласно аксиомам 2 и 3, А + В = А или В, то эти полярности принимают роль 0. Остаётся А + В = С.

2. Точно так же, если А + С = С, то А принимает роль нуля, но ноль уже определён. Если А + С = В, то 2А = С и 2А = В. Остаётся А + С = А.

3. Подобными рассуждениями получим В + С = В.

4. И окончательно из п.1, п.2 и п.3 будет С + С = С. А + А = В, иначе, если А + А = А, то А превращается в 0, если А + А = С, то это противоречит п.1.

5. Следовательно, А + А + А = 0.

6. Такими же рассуждениями В + В = А и В + В + В = 0.

7. В дальнейшем 3A = 0, 3B = 0, 4А = А, 4В = В.

8. В общем (2n + 3)A = 0, (2n + 3)B = 0, (2n+ 4)A = A, (2n + 4)B = B, но так, что каждые 2А = В, 2В = А.

История

Хотя в алгебре «действительных чисел» используются отношения а) (+)*(+) = +, б) (+)*(-) = —, в) (-)*(+) = —, г) (-)*(-) = +, но в теории групп уже появляется три полярных объекта а/а = е. Здесь е — единица такая, что (е)*(е) = е, (е)*(а) = а.

Если посмотреть внимательно, то + выполняет роль единицы, но в двухполярном отношении, так, что (+)*(+) = +.

Конечно, в теорию групп вошли понятия из «арифметического опыта», но то, что деление «растягивает» пространство, увеличивая его на одну полярность, никто не заметил. Если бы это математики заметили, то алгебра трёхполярных отношений выглядела бы иначе, чем алгебра действительных чисел. Кстати, именно, на связь с действительным миром нацелились теория групп, кольцо, поле, тело и прочие изобретения «опосля», то есть после опыта в арифметике.

Объёмная поляризация

Согласно аксиоме 1 в локе можно взять три полярных объекта А, В, С. Четвёртого не дано. Законы и правила взаимодействий между этими полярностями не станем постулировать или переносить из двухполярной системы отношений, как это делают современные математики, логики, философы и обыденно мыслящие люди. Будем предполагать, что законы взаимодействий могут оказаться иными, чем в интеллекте. Согласно аксиоме 2 взаимоотношениями будут:

а) (А)*(В)*(С); (А)*(А); (В)*(В); (С)*(С); (А)*(В); (А)*(С); (В)*(С).

б) Остальные виды взаимодействий полярных объектов будут производными от перечисленных при установлении законов отношений. Например, (А)*(А)*(В) или (В)*(В)*(С) и.т.п.

4. Соответственно предыдущему параграфу один из трёх объектов займёт место единицы.

Теорема 11.

Законы отношений между полярными объектами в локе 3 будут:

1. (А)*(В) = 0;

2. (А)*(0) = А;

3. (В)*(0) = В;

4. (А)*(А) = В;

5. (В)*(В) = А;

6. (0)*(0) = 0;

7. (А)*(А)*(А) = (В)*(В)*(В) = 0.

Для краткости последнее запишем: (А)3 = (В)3 = 0.

Доказательство.

Один из объектов, согласно § 3, займёт место единицы 0. Выберем этим объектом полярность С. Тогда, согласно аксиоме 3, можно поставить в соответствие (А)*(В) = 0, так как если (А)*(В) = А, то по свойствам А берёт на себя роль единицы. Но два объекта с одинаковыми свойствами тождественны, то есть двух единиц не дано. Согласно теореме 4 § 3 получим (А)*(0) = А и (В)*(0) = В. Соответственно (0)*(0) = 0. Если (А)*(А) = А, то А принимает свойство единицы, а это исключено. Если (А)*(А) = 0, то это не согласуется с (А)*(В) = 0, так как становится А? В. Остаётся (А)*(А) = В. Точно так же докажем, что (В)*(В) = А. Если объект В заменим в высказывании (А)*(В) = 0 на равноценное выражение (А)*(А) = В, то получим (А)*(А)*(А) = 0. Аналогично докажем что (В)*(В)*(В) = 0.

  • Читать дальше
  • 1
  • ...
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: