Вход/Регистрация
Книга теорем 2
вернуться

Ленский Василий

Шрифт:

12. Но так как (Х)*(Е) = Х, а так же (У)*(Е) = У, то получим высказывание ((Х)*(Е))* ((У)*(Е)) = Е. Откуда (Е)*(Е) = Е.

Замечание: Эта теорема так же доказывается методом индукции, начиная с локи 1, затем локи 2, локи 3, локи 4, и так далее.

Следствие. Любая лока содержит в себе такой объект, который выполняет условия:

1. (А)*(Е) = А, (В)*(Е) = В, …… (Х)*(Е) = Х.

2. (Х)*(У) = Е.

3. (Е)*(Е) = Е.

4. Элемент со свойствами (0)*(0) = (0) уже получил обозначение 0. Согласно этой символике предыдущее будет записано как:

5. (А)*(0) = А, (В)*(0) = В, …… (Х)*(0) = Х.

6. (Х)*(У) = 0.

7. (0)*(0) = (0).

Вывод: Так как мыслящий ум имеет дело с поляризованными объектами то в построениях ума должен быть объект, содержащий свойства единицы. Именно это мы встречаем в понятиях «абсолют», «бесконечность», «Бог».

Какими бы ни были виды ума, в каждом из них есть единица, то есть некоторый Абсолют. Так как видов Абсолюта (ноль, единица, бесконечность, шунья, и т. п.) много, то дадим объединяющее название «мукти».

Мукти

1. В переводе с санскрита мукти это освобождённый, свободный, вышедший из мира причин и следствий, неизменяемый. Объект со свойствами 0 + 0 + 0 +…+ 0 = 0, (+)*(+)*(+)*….*(+) = +, Е + Е + Е +…+ Е = Е, «бесконечность бесконечности есть бесконечность» и есть мукти. Символически обозначим его 0. Итак, 0*0*0….*0 = 0.

2. Мукти обладает свойством не влиять на объект. Например, (+)*(-) = —. 5 + 0 = 5, «человек во вселенной остаётся человеком». В общем, (0)*(Х) = Х.

3. Мукти является «конечным» в локализованном пространстве. Это своего рода граница такая, что любой объект отражается об эту границу (0)*(Х) = Х. Кроме того, любой объект может приблизиться и стать границей nХ = 0 или ХY = 0. Всё это доказано так, что применена система аксиом.

4. Граница создаёт условия «цикличности». Так, если nX = 0, то (n + 1)Х = Х.

5. Согласно одному из свойств границы — «цикличности» — мукти может составлять, например круг в 360 градусов, так как угол? повторится после 360 +? =?. В этой связи многополярность распространяется на тригонометрию. Рассечение круга на части и есть поляризованные объекты, которые можно вводить во взаимодействие.

6. Мукти имеют и другие локализованные пространства. Поэтому определять наличие локализации можно по законам отношений. Например, содержание «теории множеств» относится всего лишь к локе 2, так как законы отношений у авторов и разработчиков этой теории имели двухполярную базу линейного ума.

Изоморфизм

1. Изоморфизм, одно из основных понятий современной математики, возникшее сначала в пределах алгебры в применении к таким алгебраическим образованиям, как группы, кольца, поля.

2. Понятие изоморфизма относится к системам объектов с заданными в них операциями или отношениями. В качестве простого примера двух изоморфных систем можно рассмотреть плоскостной и объёмной поляризаций локу 3. В плоскостной локе А + В = 0, А + 0 = А, В + 0 = В, 0 + 0 = 0. В локе 3 объёмной поляризации ((А)*(В) = 0, (А)*(0) = А, (В)*(0) = В, (0)*(0) =0.

Внутренние «композиции» этих видов поляризованных пространств наглядно очевидны. Однако применение их к числам или объектам дает разные результаты. Например, +7–5 = +2, но (+7)*(— 5) = — 35.

3. Взаимодействие этих видов поляризованных пространств рождает алгебры. Например, для двухполярной локи (+а — в)*(— с) = — ас + вс, где а, в, с — числа; (+), (—) — полярности, * — знак взаимодействия.

Примичание.

Изоморфизм нельзя игнорировать. Особенно он ярко выражен в словесных высказываниях. Например, (+)*(+) = +, но (+)*(+) = —. Это будет словами «благополучие друзей это хорошо», но «благополучие друзей ведёт их к декрадации»

Однополярное пространство

Плоскостная локальность

В однополярной локе всего один объект. Второго не дано. Обозначим по традиции его 0. Тогда 0 + 0 +….+ 0 = 0, или, как принято,

Такие высказывания есть не только в математике. Например, «бесконечность, сложенная с бесконечностью, есть бесконечность» так как «бесконечность» не содержит ничего. Взятый иной объект тут же отождествляется. Например, в Упанишадах «Ты — это Брахман, Брахман — это ты».

Объёмная локализация

  • Читать дальше
  • 1
  • ...
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: