Шрифт:
Обсудим сделанные наблюдения. Вот перечень вопросов, на которые надо ответить. Почему капли возникают? Почему, возникнув, они не «примерзают» к кристаллу, оставаясь неподвижными, а бегают по его поверхности? Почему за каплей и «положительный» и «отрицательный» шлейфы со временем расширяются? И еще одно «почему»: почему капля живет дольше, чем ей полагалось бы жить в соответствии с законом сохранения вещества? Неужели этот святой закон нарушается? Попытаемся ответить на эти вопросы, как говорят, в порядке их поступления.
Жидкая фаза — а капли жидкие! — является промежуточной между газообразной и кристаллической. И если кристалл подогрет почти до температуры плавления, то в условиях, когда происходит переход из газообразного состояния в кристаллическое и наоборот, появление промежуточной фазы кажется естественным. А реально происходит вот что. Вблизи поверхности растущего кристалла, в прилегающей к нему прослойке газа образуются зародыши капель, которые оседают на поверхности кристалла и подрастают до видимых размеров за счет притока атомов из пара. Если же кристалл испаряется, капли на его поверхности могут возникнуть в результате столкновений огромного количества блуждающих по ней одиночных атомов, которые оторвутся и улетят в пар, если им не представится случай принять участие в создании капли.
Обязательно надо помнить о том, что и в первом и во втором случае капли образуются на поверхности кристалла, вот-вот готового расплавиться. Это означает, что жидкость капель лишь незначительно переохлаждена. Ни капель, ни шлейфов за ними не было бы, если бы кристалл имел температуру существенно ниже температуры плавления; тогда атомы из паровой фазы падали бы на поверхность кристалла и «примерзали» к ней. Они смещались бы настолько мало, что их взаимные встречи, необходимые для образования капли, были бы практически исключены.
Почему же капли не «примерзают» к поверхности кристалла? Это, действительно, странно — ведь жидкость великолепно смачивает собственную твердую фазу. Помните рассказы о капле ментола, осушенной ментоловой иглой, и о первой капле талой воды, рожденной снегом? Капле на поверхности горячего кристалла полагалось бы растечься, а не оставаться сферической! Видимо, между жидкой каплей и поверхностью кристалла имеется тончайшая газовая прослойка, и капля существует на ней, будучи как бы подвешенной в воздухе.
И еще: появлению жидкой капли на поверхности испаряющегося или кристаллизующегося из газовой фазы кристалла паратолуидина могут способствовать пары воды в атмосфере, окружающей кристалл. С водой паратолуидин образует сплав, который становится жидким при температуре ниже 44 °С. Паратолуидиновой капле, содержащей немного воды, проще быть жидкой при температуре ниже 44° С, чем капле чистого паратолуидина.
На второй вопрос ответ получился некатегорическим, но вполне правдоподобным.
Теперь о расширении шлейфов. Вот здесь полная ясность. Расширяются они потому, что шлейф создается не только движущейся каплей, но и одиночными атомами, которые при росте кристалла оседают на боковых торцах положительного, а при испарении кристалла отрываются от боковых торцов отрицательного шлейфа. Чем дальше участок бокового торца шлейфа от движущейся капли, тем больше времени с ним взаимодействуют одиночные атомы и тем шире он.
Закон сохранения вещества в процессе создания каплей шлейфа, конечно же, не нарушается. Создавая положительный шлейф, капля живет дольше, чем можно было ожидать, по причине очевидной: она себя расходует на создание шлейфа, но при этом питается за счет тех атомов, которые оседают на ней из паровой фазы. Вопрос о законе сохранения вещества в нашем перечне был последним, и ответом на него можно закончить рассказ о каплях со шлейфом.
Капельный след
Английский ученый лауреат Нобелевской премии Чарлз Томас Рисс Вильсон всю свою долгую творческую жизнь посвятил исследованию капель. Ему было 25 лет, когда он впервые попал в обсерваторию на вершине снежной горы Бен-Невис в Шотландии. Там он наблюдал грозу: тяжелые облака, сверкающие молнии, грозовые разряды, вершина Бен-Невиса в ореоле разноцветных колец, движущихся и меняющих окраску. Потрясенный красотой и загадочностью виденного, Вильсон решает посвятить себя исследованиям в области физики атмосферных явлений. А это значит, что надо начинать с изучения капель, образующих облака.
В судьбе капель его интересовало все: как они зарождаются и растут, как испаряются, как меняются под влиянием различных внешних обстоятельств.
О творческом труде Вильсона, длившемся 65 лет, может быть, никто бы и не узнал, кроме метеорологов и узких специалистов по физике дождя и облаков, если бы в 1911 году он не создал прибор, в котором благодаря каплям можно сделать видимыми траектории элементарных заряженных частиц. Этому прибору — он называется камерой Вильсона — суждено было сыграть исключительную роль в развитии физики в XX веке.