Вход/Регистрация
Язык программирования Python
вернуться

Сузи Роман Арвиевич

Шрифт:

def c(x):

if type(x) is A: …

if type(x) is B: …

if type(x) is C: …

При внесении нового типа объекта изменения в ОО–программе затрагивают только один модуль, а в процедурной — все процедуры:

Листинг

# ООП

class D:

def a: …

def b: …

def c: …

# процедурный подход

def a(x):

if type(x) is A: …

if type(x) is B: …

if type(x) is C: …

if type(x) is D: …

def b(x):

if type(x) is A: …

if type(x) is B: …

if type(x) is C: …

if type(x) is D: …

def c(x):

if type(x) is A: …

if type(x) is B: …

if type(x) is C: …

if type(x) is D: …

И наоборот, теперь нужно добавить новый метод обработки. При процедурном подходе просто пишется новая процедура, а вот для объектного приходится изменять все классы:

Листинг

# процедурный подход

def d(x):

if type(x) is A: …

if type(x) is B: …

if type(x) is C: …

# ООП

class A:

def a: …

def b: …

def c: …

def d: …

class B:

def a: …

def b: …

def c: …

def d: …

class C:

def a: …

def b: …

def c: …

def d: …

Язык программирования Python изначально был ориентирован на практические нужды. Приведенное выше выражается в стандартной библиотеке Python, то есть в том, что там применяются и функции (обычно сильно обобщенные на довольно широкий круг входных данных), и классы (когда операции достаточно специфичны). Обобщенная природа функций Python и полиморфизм, не завязанный целиком на наследовании — вот свойства языка Python, позволяющие иметь большую гибкость в комбинации процедурного и объектно–ориентированного подходов.

Заключение

Даже достаточно неформальное введение в ООП потребовало определения большого количества терминов. В лекции была сделана попытка с помощью примеров передать не столько букву, сколько дух терминологии ООП. Были рассмотрены все базовые понятия: объект, тип, класс и виды отношений между объектами (IS–A, HAS–A, USE–A). Слушатели получили представление о том, что такое инкапсуляция и полиморфизм в стиле ООП, а также наследование — продление времени жизни объекта за рамками исполняющейся программы, известное как устойчивость объекта (object persistence). Были указаны недостатки ООП, но при этом весь предыдущий материал объективно свидетельствовал о достоинствах этого подхода.

Возможно, что именно эта лекция приведет слушателей к пониманию ООП, пригодному и удобному для практической работы.

5. Лекция: Численные алгоритмы. Матричные вычисления.

В данной лекции рассматривается пакет Numeric для осуществления численных расчетов и выполнения матричных вычислений, приводится обзор других пакетов для научных вычислений.

Numeric Python — это несколько модулей для вычислений с многомерными массивами, необходимых для многих численных приложений. Модуль Numeric вносит в Python возможности таких пакетов и систем как MatLab, Octave (аналог MatLab), APL, J, S+, IDL. Пользователи найдут Numeric достаточно простым и удобным. Стоит заметить, что некоторые синтаксические возможности Python (связанные с использованием срезов) были специально разработаны для Numeric.

Numeric Python имеет средства для:

матричных вычислений LinearAlgebra;

быстрого преобразования Фурье FFT;

работы с недостающими экспериментальными данными MA;

статистического моделирования RNG;

эмуляции базовых функций программы MatLab.

Модуль Numeric

Модуль Numeric определяет полноценный тип–массив и содержит большое число функций для операций с массивами. Массив — это набор однородных элементов, доступных по индексам. Массивы модуля Numeric могут быть многомерными, то есть иметь более одной размерности.

Создание массива

Для создания массива можно использовать функцию array с указанием содержимого массива (в виде вложенных списков) и типа. Функция array делает копию, если ее аргумент — массив. Функция asarray работает аналогично, но не создает нового массива, когда ее аргумент уже является массивом:

Листинг

>>> from Numeric import *

>>> print array([[1, 2], [3, 4], [5, 6]])

[[1 2]

[3 4]

[5 6]]

>>> print array([[1, 2, 3], [4, 5, 6]], Float)

[[ 1. 2. 3.]

[ 4. 5. 6.]]

>>> print array([78, 85, 77, 69, 82, 73, 67], 'c')

[N U M E R I C]

В качестве элементов массива можно использовать следующие типы: Int8–Int32, UnsignedInt8–UnsignedInt32, Float8–Float64, Complex8–Complex64 и PyObject. Числа 8, 16, 32 и 64 показывают количество битов для хранения величины. Типы Int, UnsignedInteger, Float и Complex соответствуют наибольшим принятым на данной платформе значениям. В массиве можно также хранить ссылки на произвольные объекты.

  • Читать дальше
  • 1
  • ...
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: