Вход/Регистрация
Есть идея!
вернуться

Гарднер Мартин

Шрифт:

Ту же задачу можно поставить несколько иначе, если потребовать, чтобы цифры шли не в порядке возрастания, а в порядке убывания. Если исключить (как мы делали в предыдущей, задаче) случай, когда знак минус стоит перед первым числом, то задача допускает всего 15 решений:

98 - 76 + 54 + 3 + 21 = 100,

9 - 8 + 7 - 6 - 1 - 54 - 32 + 1 = 100,

98 - 7 - 6 - 5 - 4 + 3 + 21 = 100,

9 - 8 + 7 + 65 - 4 + 32 - 1 = 100,

9 - 8 + 76 - 5 + 4 + 3 + 21 = 100,

98 - 7 + 6 + 5 + 4 - 3 - 2 - 1 = 100,

98 + 7 - 6 + 5 - 4 + 3 - 2 - 1 = 100,

98 + 7 + 6 - 5 - 4 - 3 + 2 - 1 = 100,

98 + 7 - 6 + 5 - 4 - 3 + 2 + 1 = 100,

98 - 7 + 6 + 5 - 4 + 3 - 2 + 1 = 100,

98 - 7 + 6 - 5 + 4 + 3 + 2 - 1 = 100,

98 + 7 - 6 - 5 + 4 + 3 - 2 + 1 = 100,

98 - 7 - 6 + 5 + 4 + 3 + 2 + 1 = 100,

9 + 8 + 76 + 5 + 4 - 3 + 2 - 1 = 100,

9 + 8 + 76 + 5 - 4 + 3 + 2 + 1 = 100.

Если мы условимся ставить минус и перед первым числом, то появится 3 новых решения в том случае, когда цифры расположены в порядке убывания, и одно новое решение, когда цифры расположены в порядке возрастания:

–  9 + 8 + 76 + 5 - 4 + 3 + 21 = 100,

–  9 + 8 + 7 + 65 - 4 + 32 + 1 = 100,

–  9 - 8 + 76 - 5 + 43 + 2 + 1 = 100,

–  1 + 2 - 3 + 4 + 5 + 6 + 78 + 9 = 100.

Разумеется, знаки «пунктуации» не обязательно ограничивать плюсами и минусами, а сумму, стоящую в правой части равенства, числом 100. Сумма может быть равна, например, двум последним цифрам текущего года или любому другому числу, какое вам больше нравится.

Можете ли вы расставить, знаки так, чтобы левая часть «равенства»

1 - 2 - 3 + 4 - 5 + 6 = 5

действительно стала равно 9?

Ответ приведен в конце книги.

Загадочные знаки

Проф. Слог. А теперь, мистер Рите, мы покажем вам три загадочные надписи. В каждой из них зашифровано какое-то слово. Раскройте тайный смысл любой из надписей, и вы получите сигары. Вот первая надпись. Каков ее тайный смысл?

Мистер Рите. Не знаю. Не могу сказать. А что в ней зашифровано?

Проф. Слог. Ваше имя — Неку. Таинственные символы получены при отражении букв от горизонтальной прямой, как от поверхности озера.

Проф. Слог. Может быть, разгадать эту надпись вам будет легче?

Слушая объяснения проф. Слога, мистер Рите только крутил головой.

Проф. Слог. Каждый символ был получен из соответствующей буквы при отражении от вертикальной прямой, проходящей слева от буквы. Не правда ли, все очень просто?

Мистер Рите. Мне это задание совсем не кажется простым.

Проф. Слог. Не будем спорить. Вот последнее ваше задание. У вас еще есть шанс получить сигары.

Мистер Рите не смог и с этим заданием справиться. Когда же проф. Слог провел по жирной черте над надписью и под ней, оказалось, что в ней было скрыто слово «курите».

Занимательно о симметрии

В первой серии загадочных знаков буквы НЕКУ отражены от оси симметрии, проходящей через их основания. Заметим, что некоторые буквы при такой операции переходят в себя (например, буквы Н, Е и К, обладающие горизонтальной осью симметрии).

Во второй серии каждый загадочный знак получен при отражении букв РИТЕ относительно вертикальных осей симметрии. Заметим, что такие буквы, как Т и О (не входящая в имя и фамилию мистера Рите), при отражении относительно вертикальных прямых переходят в себя (они обладают вертикальной осью симметрии). Буква О, обладающая и вертикальной, и горизонтальной осью симметрии, не изменяется при отражениях в зеркале, поставленном, как перпендикулярно, так и параллельно строке. Возьмите зеркало и выясните, какой симметрией обладают все буквы алфавита, как строчные, так и прописные.

Можете ли вы придумать слово, которое бы не изменялось при отражении в зеркале, параллельном строке? Отражение в зеркале, поставленном параллельно строке, выдерживает в числе многих, например, слово «ОКНО». А существуют ли слова, способные выдержать отражение в зеркале, приставленном сбоку перпендикулярно строке? Да, одним из многочисленных примеров может служить слово «ТОПОТ».

Любая плоская фигура, обладающая по крайней мере одной осью симметрии, совместима со своим зеркальным отражением, хотя последнее может быть повернуто под некоторым углом. Любое геометрическое тело, обладающее плоскостью симметрии, также совместимо со своим зеркальным отражением. Глядя в зеркало, мы видим своих двойников именно потому, что наше тело обладает плоскостью симметрии, которая делит его от макушки до пят.

  • Читать дальше
  • 1
  • ...
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: