Вход/Регистрация
Диалоги
вернуться

Платон

Шрифт:

– Ради богов, да ведь мы раньше сошлись и согласились как раз на обратном тому, что говорим сейчас! Разве мы не согласились, что из меньшего возникает большее, а из большего меньшее и что вообще таково происхождение противоположностей - из противоположного? А теперь, сколько я понимаю, мы утверждаем, что так никогда не бывает!

Сократ обернулся, выслушал и ответил так:

– Ты смело напомнил! Но ты не понял разницы между тем, что говорится теперь и говорилось тогда. Тогда мы говорили, что из противоположной вещи рождается противоположная вещь, а теперь - что сама противоположность никогда не перерождается в собственную противоположность ни в нас, ни в природе. Тогда, друг, мы говорили о вещах, несущих в себе противоположное, называя их именами этих противоположностей, а теперь о самих противоположностях, присутствие которых дает имена вещам: это они, утверждаем мы теперь, никогда не соглашаются возникнуть одна из другой.

Тут он взглянул на Кебета и прибавил:

– Может быть, и тебя, Кебет, смутило что-нибудь из того, что высказал он?

– Нет, - отвечал Кебет, - нисколько. Но я не стану отрицать, что многое смущает и меня.

– Значит, мы согласимся без всяких оговорок, что противоположность никогда не будет противоположна самой себе?

– Да, без малейших оговорок.

– Теперь взгляни, согласишься ли ты со мною еще вот в каком вопросе. Ты ведь называешь что-либо холодным или горячим?

– Называю.

– И это то же самое, что сказать "снег" и "огонь"?

– Нет, конечно, клянусь Зевсом!

– Значит, горячее - это иное, чем огонь, и холодное - иное, чем снег?

– Да.

– Но ты, видимо, понимаешь, что никогда снег (как мы сейчас только говорили), приняв горячее, уже не будет тем, чем был прежде, - снегом, и вместе с тем горячим: когда горячее приблизится, он либо отступит перед ним, либо погибнет.

– Совершенно верно. {40}

– Равным образом ты, видимо, понимаешь, что огонь, когда приближается холодное, либо сходит с его пути, либо же гибнет: он и не хочет и не в силах, принявши холод, быть тем, чем был прежде, - огнем, и, вместе, холодным.

– Да, это так.

– Значит, в иных из подобных случаев бывает, что одно и то же название сохраняется на вечные времена не только за самой идеей, но и за чем-то иным, что не есть идея, но обладает ее формою во все время своего существования. Сейчас, я надеюсь, ты яснее поймешь, о чем я говорю. Нечетное всегда должно носить то имя, каким я его теперь обозначаю, или не всегда?

– Разумеется, всегда.

– Но одно ли оно из всего существующего - вот что я хочу спросить, - или же есть еще что-нибудь: хоть оно и не то же самое, что нечетное, все-таки кроме своего особого имени должно всегда называться нечетным, ибо по природе своей неотделимо от нечетного? То, о чем я говорю, видно на многих примерах, и в частности на примере тройки. Поразмысли-ка над числом "три". Не кажется ли тебе, что его всегда надо обозначать и своим названием, и названием нечетного, хотя нечетное и не совпадает с тройкой? Но такова уж природа и тройки, и пятерки, и вообще половины всех чисел, что каждое из них всегда нечетно и все же ни одно полностью с нечетным не совпадает. Соответственно два, четыре и весь другой ряд чисел всегда четны, хотя полностью с четным ни одно из них не совпадает. Согласен ты со мною или нет?

– Как не согласиться!
– отвечал Кебет.

– Тогда следи внимательнее за тем, что я хочу выяснить. Итак, по-видимому, не только все эти противоположности не принимают друг друга, но и все то, что не противоположно друг другу, однако же постоянно несет в себе противоположности, как видно, не принимает той идеи, которая противоположна идее, заключенной в нем самом, но, когда она приближается, либо гибнет, либо отступает перед нею. Разве мы не признаем, что число "три" скорее погибнет и претерпит все, что угодно, но только не станет, будучи тремя, четным?

– Несомненно, признаем, - сказал Кебет.

– Но между тем два не противоположно трем?

– Нет, конечно.

– Стало быть, не только противоположные идеи не выстаивают перед натиском друг друга, но существует и нечто другое, не выносящее сближения с противоположным?

– Совершенно верно.

– Давай определим, что это такое, если сможем?

– Очень хорошо.

– Не то ли это, Кебет, что, овладев вещью, заставляет ее принять не просто свою собственную идею, но [идею] того, что всегда противоположно тому, [чем оно овладевает]?

– Как это?

– Так, как мы только что говорили. Ты же помнишь, что всякая вещь, которою овладевает идея троичности, есть непременно и три, и нечетное. {41}

– Отлично помню.

– К такой вещи, утверждаем мы, никогда не приблизится идея, противоположная той форме, которая эту вещь создает.

– Верно.

– А создавала ее форма нечетности?

– Да.

– И противоположна ей идея четности?

– Да.

– Стало быть, к трем идея четности никогда не приблизится.

– Да, никогда.

– У трех, скажем мы, нет доли в четности.

– Нет.

– Стало быть, три лишено четности.

– Да.

– Я говорил, что мы должны определить, что, не будучи противоположным чему-то иному, все же не принимает этого как противоположного. Вот, например, тройка: она не противоположна четному и тем не менее не принимает его, ибо привносит нечто всегда ему противоположное. Равным образом двойка привносит нечто противоположное нечетности, огонь - холодному и так далее. Теперь гляди, не согласишься ли ты со следующим определением: не только противоположное не принимает противоположного, но и то, что привносит нечто противоположное в другое, приближаясь к нему, никогда не примет ничего сугубо противоположного тому, что оно привносит. Вспомни-ка еще разок (в этом нет вреда - слушать несколько раз об одном и том же): пять не примет идеи четности, а десять, удвоенное пять, - идеи нечетности. Разумеется, это - десятка, - хоть сама и не имеет своей противоположности, вместе с тем идеи нечетности не примет. Так же ни полтора, ни любая иная дробь того же рода не примет идеи целого, ни треть, как и все прочие подобные ей дроби. Надеюсь, ты поспеваешь за мною и разделяешь мой взгляд.

  • Читать дальше
  • 1
  • ...
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: