Шрифт:
Отметим, что приведенная выше реализация не допускает ребер, ведущих из некоторого узла в него же. Кроме того, два узла могут быть соединены только одним ребром.
Мы позволяем задать начальный состав ребер, передавая пары в конструктор. Кроме того, можно добавлять и удалять ребра, а также проверять наличие ребра между двумя вершинами. Метод
Наконец, имеются два итератора
9.4.2. Является ли граф связным?
Не все графы связные. Иногда нет способа «добраться из одной точки в другую», то есть между двумя вершинами нет никакого пути, составленного из ребер. Связность — это важное свойство графа, его надо уметь вычислять. В связном графе любая вершина достижима из любой другой.
Не будем объяснять принцип работы алгоритма, интересующийся читатель может найти описание в любой книге по дискретной математике. Но в листинге 9.4 приведена его реализация на Ruby.
В примере упомянут метод
Можно было бы усовершенствовать этот алгоритм, так чтобы он находил все связные компоненты несвязного графа. Но мы не станем этого делать.
9.4.3. Есть ли в графе эйлеров цикл?
Нет такой отрасли математики, сколь угодно абстрактной, которая со временем не нашла бы применения в реальной жизни.
Николай ЛобачевскийИногда нужно знать, есть ли в графе эйлеров цикл. Термин связан с математиком Леонардом Эйлером, который основал область топологии, занимающуюся этим вопросом. (Графы, обладающие таким свойством, называют иногда уникурсивными, поскольку их можно нарисовать не отрывая карандаша от бумаги и не проходя дважды по одному и тому же ребру.)
В немецком городе Кенигсберг был остров посередине реки. С двумя берегами остров связывало семь мостов. Горожане хотели знать, можно ли обойти город так, чтобы побывать на каждом мосту ровно один раз и вернуться в исходную точку. В 1735 году Эйлер доказал, что это невозможно. Эта классическая задача стала первой проблемой теории графов.
Как часто бывает в жизни, решение кажется простым, когда оно найдено. Оказалось, что для существования в графе эйлерова цикла необходимо и достаточно, чтобы все вершины имели четную степень. Вот короткий код, проверяющий выполнение этого свойства: