Вход/Регистрация
Шаги за горизонт
вернуться

Гейзенберг Вернер Карл

Шрифт:

Изучение поведения ливня таких космических лучей крайне высоких энергий должно поэтому дать ценнейшую информацию о динамике материи. В данной связи обнадеживающим является то, что на накопительных кольцах протонного синхротрона Европейского центра по ядерным исследованиям (ЦЕРН) и на ускорителе «Батавия» асимптотическая область уже достигнута или по крайней мере к ней уже приблизились. Для начальной фазы столкновений в этой области первичные частицы можно представлять себе просто как облака непрерывной материи, плотность которой на поверхности уменьшается по экспоненте. Такая модель объясняет логарифмическое возрастание полного сечения в зависимости от приращения энергии. Следовало бы только указать на характерное различие, существующее между [мысленными] экспериментами со звездами предельно высокой плотности и экспериментами с дисками, получающимися при столкновении высокоэнергетических частиц. В первом случае гравитация играет важную роль, во втором она несущественна. Так что эти два вида экспериментов могут дать нам два разных типа важной информации.

Возвращаясь в заключение к общим вопросам, упомянутым мною в начале моего доклада, я должен, по-видимому, сказать, что особая роль космического излучения внутри физики как целого покоится на двух обстоятельствах. Космическое излучение предоставляет информацию о поведении материи в наименьших масштабах; и оно же расширяет наше знание о строении Вселенной, о мире в широчайших масштабах. Оба эти крайних полюса недоступны прямому наблюдению, их можно изучать лишь посредством косвенных дедукций, по необходимости заменяя наши повседневные понятия другими, чрезвычайно абстрактными новыми понятиями; и лишь затем мы начинаем понимать, что могут означать в применении к природе такие выражения, как «последняя граница» или «бесконечность». В этом смысле исследование космических лучей — несмотря на все изменения в стиле экспериментов — все еще может быть названо очень романтической, очень вдохновляющей наукой.

Что такое элементарная частица? [64]

Ответ на вопрос «Что такое элементарная частица?» должны дать, естественно, прежде всего эксперименты. Я поэтому первым делом кратко подытожу важнейшие итоги физики элементарных частиц за последние полвека и попытаюсь доказать, что если мы непредвзято рассмотрим данные экспериментов, то ответ на вышеназванный вопрос будет в основном уже получен и теоретику останется не так уж много прибавить от себя. Во второй части своего доклада я затрону также и философские проблемы, связанные с понятием элементарных частиц. Дело в том, что, по-моему, известные тупики теории элементарных частиц — заставляющие тратить много усилий на бесполезные поиски — обусловлены подчеркнутым нежеланием многих исследователей вдаваться в философию, тогда как в действительности эти люди бессознательно исходят из дурной философии и под влиянием ее предрассудков запутываются в неразумной постановке вопроса. Несколько утрируя, можно, пожалуй, сказать, что дурная философия исподволь губит хорошую физику. В заключение я поговорю об этих спорных попытках, сравню их с аналогичными блужданиями в развитии квантовой механики, известной мне по личному опыту, и предложу некоторые свои соображения о том, как можно избегать подобных тупиков. Так что конец доклада снова окажется более оптимистичным.

64

56 Доклад на заседании Немецкого физического общества 5 марта 1975 г. Первая публикация: Heisenberg W. Was ist ein Ele-mentarteilchen?//Die Naturwissenschaften, 1976, Bd. 63, S. 1–7.

Итак, сначала — экспериментальные данные. Менее полувека назад Дирак в своей теории электрона предсказал, что, помимо электрона, должны существовать соответствующие ему античастицы — позитроны; и через несколько лет К. Андерсен и П. Блэкет экспериментально подтвердили существование позитронов, их возникновение при образовании пар, а тем самым и существование так называемой антиматерии. Это было открытие величайшей важности.

Ведь до того времени большей частью считалось, что имеются два вида фундаментальных частиц, электроны и протоны, отличающиеся от всех других тем, что они никогда не изменяются и что, следовательно, их число всегда постоянно, и по этой причине они и получили название элементарных частиц. Всю материю можно было считать состоящей в конечном счете из электронов и протонов. Экспериментальное доказательство образования пар — электронов и позитронов — показало ложность такого представления. Электроны могут возникать и снова исчезать; число их поэтому никоим образом не постоянно; они не элементарны в том смысле, какой раньше придавался этому слову.

Следующим важным шагом было открытие искусственной радиоактивности Ферми [65] . Многочисленные опыты показали, что атомное ядро, излучая частицы, способно превращаться в другое атомное ядро, если того допускают законы сохранения энергии, орбитального момента, электрического заряда и т. д. Превращение энергии в материю, предсказанное уже Эйнштейновой теорией относительности, представляет собой, таким образом, очень часто наблюдаемый феномен. О постоянстве числа частиц тут нет и речи. Существуют, однако, физические свойства, характеризующиеся определенным квантовым числом — я имею в виду, скажем, орбитальный момент или электрический заряд, — причем квантовые числа могут принимать положительные и отрицательные значения и подчиняются закону сохранения энергии.

65

57 В 1937 г. Энрико Ферми получил Нобелевскую премию по физике за открытие искусственной радиоактивности, обусловленной нейтронами. См. прим. 43.

В 30-е годы было сделано еще одно важное экспериментальное открытие. Оказалось, что в космическом излучении встречаются частицы очень высоких энергий, которые при столкновении с другими частицами, например с протоном фотоэмульсии, могут породить ливень из множества вторичных частиц. Некоторое время многие физики думали, что причиной подобных ливней могут быть лишь некие каскадные механизмы в атомном ядре; но позднее было выяснено, что предположенное теорией множественное образование вторичных частиц происходит в действительности также и при столкновении всего лишь двух высокоэнергетических частиц. В конце 40-х годов С. Пауэллом были открыты пионы, играющие главную роль в этих ливнях. Тем самым было установлено, что при столкновении частиц очень высоких энергий происходит превращение энергии в материю — важнейший, сплошь и рядом встречающийся процесс, вследствие чего уже явно не имеет никакого смысла говорить о делении исходных частиц.

Понятие «деление» под напором экспериментальных данных утратило свой смысл.

Это новое положение вещей снова и снова подтверждалось в ходе экспериментов 50-х и 60-х годов; было открыто много новых частиц, короткоживущих и долгоживущих, и на вопрос, из чего они состоят, уже нельзя было дать определенного ответа, потому что сам вопрос тем временем утратил смысл. Протон, например, может состоять из нейтрона и пиона, или из Х-гиперона и каона, или из двух нуклонов и одного антинуклона; всего проще было бы сказать, что протон состоит из материального континуума. Все эти высказывания одинаково истинны или одинаково ложны. Различие между элементарными и сложными частицами в принципе исчезло. В этом, пожалуй, важнейшее экспериментальное достижение последних 15 лет.

В ходе этих событий эксперименты все отчетливее подводили к одной важной аналогии: элементарные частицы есть нечто подобное стационарным состояниям атома или молекулы. Существует целый спектр частиц, подобно тому как существует спектр состояний, например атома железа или молекул; тут можно вспомнить о различных стационарных состояниях молекулы или о множестве различных химических молекул. В случае частиц можно говорить о спектре материи. Эксперименты на больших ускорителях в 60-е и 70-е годы показали, что эта аналогия распространяется на все известные нам до сих пор факты. Характеристикой как для стационарных состояний атомов, так и для частиц могут служить квантовые числа, то есть свойства симметрии и правила преобразования; возможность же превращений определяется соответствующими им — точными или приближенными — законами сохранения. Скажем, подобно тому, как преобразовательные свойства возбужденного атома водорода при пространственном вращении определяют, может ли он, испустив световой квант, перейти в более низкое состояние, аналогичные свойства симметрии определяют, может ли, например, -бозон, излучив один пион, превратиться в -бозон. Как у стационарных состояний атома, так и у частиц продолжительность жизни очень различна. Основное состояние атома стабильно, он имеет бесконечную продолжительность жизни, и то же справедливо в отношении таких частиц, как электрон, протон, дейтрон (Deuteron) и т. д. Эти стабильные частицы, однако, ничуть не более элементарны, чем нестабильные. Основное состояние атома водорода вытекает из того же уравнения Шрёдингера, из которого вытекают и возбужденные состояния. Электрон и световой квант тоже ничуть не элементарнее, чем, допустим, -гиперон.

  • Читать дальше
  • 1
  • ...
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: