Вход/Регистрация
Статьи
вернуться

Тесла Никола

Шрифт:

С помощью описанного выше устройства я сумел намного лучше, чем прежде, обследовать тело посредством флуоресцентного экрана. Теперь позвоночный столб можно разглядывать довольно четко, даже в нижней части тела. Мне были также ясно видны контуры тазовых костей. Проводя наблюдение в области сердца, я безошибочно сумел определить его местонахождение. Фон выглядел намного ярче, и такое различие в яркости тени и окружающей картины поразило меня. Ребра я мог теперь рассматривать в ряде случаев достаточно отчетливо, также как и кости плеча. Конечно, нетрудно обследовать кости любых конечностей. Я отметил своеобразные эффекты, которые отнес на счет масла. Например, лучи проходили через пластины металла толщиной более одной восьмой дюйма, и в одном случае я смог довольно ясно увидеть кости моей руки через листы меди, железа и латуни толщиной почти в одну четверть дюйма. Через стекло лучи, казалось, проходят настолько свободно, что если смотреть через экран в направлении под прямыми углами к оси трубки, то видно самое интенсивное действие, хотя лучи должны были пройти через большую толщу стекла и масла. Стеклянная пластина толщиной почти полдюйма, которую поместили перед экраном, едва флуоресцировала. Когда экран помещался перед трубкой на расстоянии около трех футов, то голова помощника, втиснутая между экраном и трубкой, отбрасывала лишь слабую тень. Временами казалось, что кости и плоть как бы в равной степени прозрачны для излучений, проходящих через масло. Когда экран находился очень близко к лампе, он освещался через тело помощника столь сильно, что когда перед ним двигали рукой, я мог ясно различать движение руки через тело. В одном случае были различимы даже кости руки.

После того, как в некоторых опытах я заметил необычную прозрачность костей, то поначалу предположил, что лучи могут быть колебаниями высокой частоты, и что часть их неким образом поглощалась маслом. Однако, такой взгляд пришлось отбросить, когда я обнаружил, что на определенной дистанции от лампы получается контрастная тень костей. Последнее обстоятельство привело меня к успешному использованию экрана при получении отпечатков на пластине. А именно, в таком случае удобно сначала посредством экрана определить надлежащее расстояние, на котором следует разместить объект перед тем, как делать отпечаток. Часто оказывается, что изображение намного четче на большом расстоянии. Во избежание ошибок при работе с экраном я окружил ящик толстыми металлическими пластинами так, чтобы воспрепятствовать получаемой вследствие излучений флуоресценции, которая достигает экрана с боков. По-моему, такая мера совершенно необходима, если стремиться добиться точных результатов.

В процессе все еще продолжаемого мною изучения поведения масел и прочих жидких изоляторов мне пришло в голову исследовать важный эффект, открытый профессором Дж. Дж. Томсоном. Некоторое время назад он заявил, что все тела, через которые проходят рентгеновские излучения, становятся проводниками электричества. Для исследования данного явления я прибегнул к резонанс чувствительному испытанию, по методике, указанной мною в более ранних работах по высокочастотным токам. Вторичную катушку, которая желательно не имеет слишком тесной индуктивной связи с первичной катушкой, соединяют с ней и с землей, а колебание в первичной катушке настраивают так, чтобы был истинный резонанс. Поскольку вторичная катушка имела значительное число витков, то очень небольшие тела, прикрепляемые к свободной клемме, существенно изменяли потенциал на ней. В деревянную заполненную маслом камеру я помещал трубку, соединял ее с клеммой и настраивал колебание в первичной обмотке так, чтобы наступил резонанс, но чтобы лампа не излучала рентгеновские лучи в сколько-нибудь ощутимой степени. Затем я изменял режим так, чтобы лампа испускала лучи очень активно. Теперь, согласно предположению профессора Дж. Дж. Томсона, масло должно было стать проводящим, и должно было наступить очень заметное изменение в колебании. Оказалось, что это не так, поэтому в открытом Дж. Дж. Томсоном явлении необходимо усматривать лишь еще одно доказательство того, что здесь мы имеем дело с потоками материи, которые, проходя через тела, уносят электрические заряды. Но тела не становятся проводниками в общем значении этого термина. Метод, которого я придерживался, настолько чувствительный, что ошибка почти невозможна.

ИНТЕРЕСНАЯ ОСОБЕННОСТЬ РЕНТГЕНОВСКИХ ИЗЛУЧЕНИЙ*

Возможно, ценность изложенных здесь результатов, полученных с помощью ламп, испускающих рентгеновские излучения, в том, что они проливают дополнительный свет на природу излучений, а также лучше иллюстрируют уже известные свойства. В основном, результаты согласуются с теми взглядами, которые сложились у меня с самого начала. А именно, с идеей о том, что лучи состоят из потоков малых материальных частиц, выбрасываемых с огромной скоростью. В многочисленных опытах мною обнаружено, что материя, которая за счет удара внутри лампы вызывает образование лучей, может поступать с любого из электродов. Поскольку при продолжительном использовании электроды в заметной степени разрушаются, то, как кажется, более убедительным будет предположение о том, что выбрасываемая материя состоит из частиц самих электродов, а не остаточного газа. И другие результаты, на которых у меня нет возможности подробно останавливаться в данный момент, приводят к такому выводу. Сгустки выбрасываемой материи при последующем ударе расщепляются на столь мелкие частицы, что они способны проходить сквозь стенки лампы, либо они вырывают эти частицы из стенок или в общем случае из тел, с которыми они сталкиваются. Во всяком случае, удар и последующее дробление на осколки кажутся абсолютно необходимыми для образования рентгеновских лучей. Колебание, если таковое имеет место, — это только то, которое наведено прибором, и колебания эти могут быть только продольными.

Главный источник лучей — это неизменно место первого соударения внутри лампы, будь то анод, как в некоторых конструкциях трубки, или заключенное внутри отдельно стоящее тело, или стеклянная стенка. Когда вылетающую из электрода материю после столкновения с препятствием отбрасывает к другому телу, например, к стенке лампы, место второго соударения является очень слабым источником лучей.

Эти и другие явления лучше понятны из приведенного рисунка, на котором показана фор- ма трубки, которую я использовал в ряде экспериментов. Обычная форма — та, что описана раньше. Единственный электрод б, состоящий из массивной алюминиевой пластины, смонти- рован на проводнике С,который, как обычно, обволакивается стеклом W,и запечатан в один из концов прямой трубки b диаметром около пяти и длиной 30 сантиметров. Другой конец трубки выдувают в виде тонкостенного шарика слегка большего диаметра, а вблизи этого конца на стеклянном стержне Sкрепится воронка/из тонкого платинового листа. В таких шариках я при- менял ряд различных металлов с целью усиления интенсивности лучей, а также для их отраже- ния и фокусировки. Но поскольку в своей последней статье профессор Рентген указал, что платина дает самые интенсивные лучи, я использовал главным образом этот металл, обнаружив, что эффект на экране или чувствительной пластине заметно усиливается. Особой целью описы- ваемой конструкции было выяснение вопроса, будут ли лучи, генерируемые на внутренней по- верхности платиновой воронки fфокусироваться снаружи шарика, а кроме того, будут ли они от этой точки распространяться прямолинейно. Для этого было предусмотрено, чтобы вершина платинового конуса, точка о, находилась примерно в двух сантиметрах снаружи шарика.

Когда лампу должным образом откачивали и приводили в действие, стеклянная стенка под воронкой f сильно но неоднородно фосфоресцировала, так как на периферии было узкое кольцо, rr, более яркое, чем остальные участки, причем было очевидно, что кольцо это вызвано лучами, отражаемыми от платинового листа. Если флуоресцентный экран поместить ниже воронки вплотную к стеклянной стенке или достаточно близко от нее, то находящаяся совсем рядом с фосфоресцирующим пятном часть экрана ярко освещается, причем контур совершенно расплывчат. Если теперь экран отводить от шарика, то сильно освещенное пятно становится меньше, а контур четче, пока — по достижении точки о — светящаяся часть не уменьшается до маленькой точки.

Схема, Иллюстрирующая Эксперимент

Перемещение экрана на несколько миллиметров за точку о приводит к появлению небольшого темного пятна, которое разрастается в круг и становится все больше соразмерно увеличению расстояния от шарика (см. S),пока при значительном расстоянии темный круг.| целиком не охватит весь экран. Данный эксперимент изумительно проиллюстрировал прямолинейное распространение, которое Рентген первоначально доказывал точечными фотографиями. Но кроме этого был замечен один важный момент, а именно, что флуоресцирующая стеклянная стенка практически не испускала лучи, тогда как не будь платины, она (стенка) была бы в подобных условиях эффективным источником лучей, так как даже при слабом возбуждении лампы стекло сильно нагревалось. Единственное, чем я могу объяснить отсутствие излучения из стекла, — это предположением, что материя, распространяющаяся от поверхности платинового листа, уже находится в сильно раздробленном состоянии, когда достигает стеклянную стенку. Еще один примечательный факт: по крайней мере при слабом возбуждении лампы кромка темного круга очень четкая, что решительно отметает диффузию. При очень сильно возбужденной лампе фон становится ярче, а тень Sслабее, хотя даже в этом режиме ее отчетливо видно.

Из описанного выше очевидно, что при подходящей конструкции лампы выходящие из нее лучи можно на некотором расстоянии сфокусировать на очень маленькой площади, а из этого можно извлечь практическую пользу при получении изображений на пластине или при обследовании тел с помощью флуоресцирующего экрана.

РЕНТГЕНОВСКИЕ ЛУЧИ ИЛИ ПОТОКИ*

В первом отчете о своих эпохальных открытиях Рентген выразил убеждение, что те явления, которые он наблюдал, — следствие неких новых возмущений в эфире. Эта точка зрения требует более тщательного рассмотрения, поскольку, вероятно, она формировалась на волне первого воодушевления от открытий, когда мысль первооткрывателя способна намного глубже проникать в суть вещей.

  • Читать дальше
  • 1
  • ...
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: